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A variety of numerical techniques are available for tracking moving interfaces.
In this review, we concentrate on techniques that result from the link between the
partial differential equations that describe moving interfaces and numerical schemes
designed for approximating the solutions to hyperbolic conservation laws. This link
gives rise to computational techniques for tracking moving interfaces in two and
three space dimensions under complex speed laws. We discuss the evolution of these
techniques, the fundamental numerical approximations, involved, implementation
details, and applications. In particular, we review some work on three aspects of ma-
terials sciences: semiconductor process simulations, seismic processing, and optimal
structural topology design.© 2001 Academic Press

1. Overview and Introduction

A large number of computational problems and physical phenomena involve the mot
of interfaces separating two or more regions. These include problems in such areas as
mechanics, combustion, materials science, meteorology, and computer vision. In tt
problems, challenging issues often involve:

e interfaces that change topology, break, and merge as they move;

o formation of sharp corners, cusps, and singularities;

e dependence of the interface motion on delicate geometric quantities such as curvea
and normal direction;

e complexities in three dimensions and higher; and

e subtle feedback between the physics and chemistry off the interface and the posi
and motion of the front itself.

1 This work was supported in part by the Applied Mathematical Science subprogram of the Office of Ene
Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098, and the Office of N
Research under grant FDN00014-96-1-0381.
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One approach to formulating, modeling, and building computational techniques for so
aspects of these problems is provided by level set methods. These techniques wor
embedding the propagating interface as the zero level set of a time-dependent, img
function, and then solving the resulting equations of motion in a fixed-grid Eulerian settir
They have been used with considerable success in a wide collection of settings, incluc
fluid mechanics, crystal growth, combustion, and medical imaging. A general overview
the theory, numerical approximation, and range of applications may be found in [81].

Level set methods, introduced by Osher and Sethian [56], rely in part on the theory
curve and surface evolution given in [69] and on the link between front propagation a
hyperbolic conservation laws discussed in [70]. They recast interface motion as a tir
dependent Eulerian initial value partial differential equation, and they rely on viscos
solutions to the appropriate differential equations to update the position of the front, us
an interface velocity that is derived from the relevant physics both on and off the interfa
These viscosity solutions are obtained by exploiting schemes from the numerical solu
of hyperbolic conservation laws. Level set methods are specifically designed for proble
involving topological change, dependence on curvature, formation of singularities, and
host of other issues that often appear in interface propagation techniques. Over the pas
years, various aspects of these techniques have been refined to the point where a ge
computational approach to arbitrary front propagation problems is available. This gen
computational approach allows one to track the motion of very complex interfaces, w
significant and delicate coupling between the relevant physics and the interface motior

Level set methods cast interface propagation in terms of a time-dependent initial ve
problem. More recently, a set of finite difference numerical techniques known as “f:
marching methods” were developed by Sethian [75]; they were constructed to solve
Eikonal equation, which is a boundary value partial differential equation. These techniq
rely on a marriage between the numerical technology for computing the solution to hyp
bolic conservation laws and the causality relationships inherent in finite difference upwi
schemes. Fast marching methods are Dijkstra-type methods, in that they are closely
nected to Dijkstra’s well-known network path algorithms [29]; however, they approxima
the solution to the underlying Eikonal equation in a consistent manner. While the Eikol
equation itself describes some front propagation problems, the important link we shall e
phasize in this review is that fast marching methods provide a general, efficient, and accu
way to actually implement some aspects of level set methods.

Both sets of techniques, that is, level set methods and fast marching methods, requit
adaptive methodology to obtain computational efficiency. In the case of level set methc
this leads to the preferred narrow-band level set method introduced by Adalsteinsson
Sethian in [1]. In the case of fast marching methods [75], adaptivity and speed stem fr
the causality relationship and the use of heap data structures.

In this review, we discuss some aspects of the evolution and implementation of th
techniques. We give pointers to some of the many applications and then focus on tt
in particular. First, we discuss interface propagation techniques for process simulatiol
semiconductor manufacturing, focusing on etching and deposition simulations. The goz
these simulations is to follow the profile evolution during the various stages of building
silicon chip. The evolving profile depends on such factors as material-dependent etch
deposition rates, visibility and masking, complex flux laws, and integral equations arisi
from reemission and redeposition processes. Here, we follow closely the work and tex
Adalsteinsson and Sethian, [2—4]. Second, we discuss aspects of fast marching met
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applied to seismic processing, following closely the work and text of Sethian and Popo
[85]. Third, we discuss the application of level set techniques to optimal structural topolc
design; the goal is to design materials which can carry given loads and minimize the amc
of material involved. Here, we follow closely the work and text of Sethian and Wiegmal
[88].

. FORMULATIONS OF MOVING INTERFACES, HYPERBOLIC EQUATIONS,
AND CONNECTIONS WITH SHOCK SCHEMES

2. Characterizations of Moving Interfaces
2.1. Mathematical Formulations

There are at least three ways to characterize a moving interface, and none of then
new. Interestingly, each comes from its own branch of mathematics. For simplicity,
discuss the issues in two space dimensions, that is, a one-dimensional interface whi
a simple closed curvE(t) moving in two dimensions. Assume that a given velocity fielc
u = (u, v) transports the interface. All three constructions carry over to three dimensiol

The geometric view. Suppose one parameterizes the interface, th&t(t3,= (x(s, t),
y(s,t)). Then one can write (see, for example, [68]) the equations of motion in terms
individual componentg = (X, y) as

wooul ¥
(E+y2)"*)

Yo =—v| — = 172 |-
(2 +2)

This is a differential geometry view; the underlying fixed coordinate system has been ak
doned, and the motionis characterized by differentiating with respect to the parameterize
variables. Since the front motion is categorized in terms of the speed normal to the interfa
the above equation represents motion along that normal vector field.

@)

The set theoretic view.Consider the characteristic functign(x, y, t), wherey is one
inside the interfac€ and zero otherwise. Then one can write the motion of the characteris
function as

Xt =u-Vy. (2

In this view, all the points inside the set (that is, where the characteristic function is uni
are transported under the velocity field.

The analysis view. Consider the implicit functiop : R? x [0, co) — R, defined so that
the zero level sep = 0 corresponds to the evolving frof{t). Then the equation for the
evolution of this implicit function corresponding to the motion of the interface is given b

¢ +U-Vp=0. ©)

2.2. Discretizations

Each of these views is perfectly reasonable, and each has spawned its own nume
methodology to discretize the equations of motion. Marker particle methods, also knowi
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string methods and nodal methods, discretize the geometric view and take a finite nun
of points to divide up the parameterization sp&&oblume-of-fluid methods, also known
as cell methods and volume fraction methods, use a fixed underlying grid and discretize
characteristic function, filling each cell with a number that reflects the amount of charact
istic function contained in that cell. Level set methods approximate the partial different
equation for the time-dependent implicit functi@through a discretization of the evolution
operators on a fixed grid.

These discretizations contain keys to both the virtues and the drawbacks of the vari
approaches.

e The geometric/marker particle view keeps the definition of a front sharp. Special att
tion is required when marker particles collide, because these collisions can create cor
and cusps, as well as changes in topology. These techniques often go by names such a
tour surgery, reconnection algorithms, etc.; at their core, they reflect user-based decis
about the level of resolution. In addition, this discrete parameterized characterization of
interface can be intricate for two-dimensional surfaces moving in three dimensions.

e The characteristic/volume-of-fluid approach straight forwardly applies in multiple d
mensions, handling topological merger easily, since this results from Boolean operati
on sets. It requires some method of differentiating the characteristic fungtisimce by
definition this object is discontinuous, one must devise an approximation to perform
the evolution update. This is typically done through algorithms which locally reconstru
the front from the volume or cell fractions and then use this reconstruction to build t
appropriate transport terms.

e Theimplicit/level set approach extends to multiple dimensions and handles topologi
changes easily. In addition, because the functids defined everywhere and smooth in
many places, calculation of gradients in the transport term, as well as geometric quant
such as normal derivatives and curvature, is straightforward. It requires a way of delinea
the actual interface, since its location does not necessarily correspond to the discretize
grid points.

2.3. Implicit Formulations of Interface Motion
To take this implicit approach, there are three additional issues.

e First, an appropriate theory and strategy must be chosen in order to select the col
weak solution once the underlying smoothness is lost; this is linked to the work on t
evolution of curves and surfaces and the link between hyperbolic conservation laws
propagation equations (see Sethian [68-70]).

e Second, the Osher—Sethian level set technique which discretizes the above req
an additional space dimension to carry the embedding, and hence it is computation
inefficient for many problems. This is rectified through the adaptive narrow-band meth
given by Adalsteinsson and Sethian in [1].

e Third, since both the level set function and the velocity are now defined away fro
the original interface, appropriate extensions of these values must be constructed. T
extension velocities have been eixilly constructed for a variety of specific problems; see,
forexample, [4, 19, 20, 51, 63, 86, 91, 103]. One general technique for doing so for arbitr
physics and chemistry problems is given by Adalsteinsson and Sethian in [5] through the
of fast marching methods to solve an associated equation which constructs these extens
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2.4. Interrelations between Techniques

It is important to state at the outset that each of the above technigues has evolved tc
point where they provide practical, efficient, and accurate methodologies for comput
a host of computational problems involving moving interfaces. Marker particle metho
have been around for a very long time and have been used in a collection of settir
including, for example, bubble interactions and fluid instabilities (see, for example, Buni
and Tryggvasson [17], Esmaeeli and Tryggvason [30, 31], and Glenal. [33, 34]).
Volume-of-fluid techniques, starting with the initial work of Noh and Woodward [55] (se
also[36]), have been used to handle shock interactions and fluid interfaces (see, for exar
Puckett [59] and Popinet and Zaleski [58]). Level set techniques have been appliedto al
collection of problems; general reviews may be found in [77, 78, 80, 81]; a popular revi
may be found in [79F.In companion articles in this issue, a variety of interface technique
and applications will be discussed in detalil.

Finally, we note that the strict delineations between various approaches is not me
to imply that the various techniques have not influenced each other. Modern level
methods often use atemporary marker representation of the front to help build the exten
velocities; volume-of-fluid methods use differentiation ideas in level set methods to h
construct normal vectors and curvature values; and marker models often use an under
fixed grid to help with topological changes. Good numerics is ultimately about getting thin
to work; the slavish and blind devotion to one approach above all others is usually a s
of unfamiliarity with the range of troubles and challenges presented by real application

3. Theory and Algorithms for Front Propagation
3.1. Propagating Fronts, Entropy Conditions, and Weak Solutions

To build up to the numerical implementation of the level set method introduced in [5¢
we review some of the background work. One of the main difficulties in solving the fro
propagation equations is that the solution need not be differentiable, even with arbitra
smooth boundary data. This nondifferentiability is intimately connected to the notion
appropriate weak solutions. The goal is to construct numerical techniques which natur
account for this nondifferentiability in the construction of accurate and efficient appro:
mation schemes and to admit physically correct nonsmooth solutions.

In [68, 69], the equation for a curve propagating normal to itself with a given speed
and which remains a graph as it moves was studied. Consider the simple speed fun
F = 1and afrontwhichis aninitial periodic cosine curve, as shown in Fig. 1. In Fig. 1a, t
front propagating with speell = 1 passes through itself and becomes the double-valu
swallowtail solution; this can be seen by noting that for the dase 1, there is an exact
solution to the equations of motion (Egs. 1) given by the geometric view. This a perfec
reasonable view of the solution, but it is one that does not lend itself to the view of the fr
as a boundary between two regions.

However, suppose the moving curve is regarded as a physical interface separating
regions. From a geometrical argument, the front at tinsbould consist of only the set
of all points located a distandefrom the initial curve. Figure 1b shows this alternate

2 An introductory web page may be found at www.math.berkeley-esethian/levelet.html; this website
provides a large number of Applets and tutorials to explain the various techniques and applications.
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FIG. 1. Cosine curve propagating with unit speed. (a) Swallowfaix 1.0); (b) entropy solutionf = 1.0).

weak solution. Roughly speaking, one wants to remove the “tail” from the “swallowtai
(see [69]). One way to build this solution is through a Huygens principle construction; t
solution is developed by imagining wave fronts emanating with unit speed from each pc
of the boundary data; the envelope of these wave fronts always corresponds to the *
arrivals.” This will automatically produce the solution given on the right in Fig. 1. This i
the approach taken in [69].

Another way to obtain the solution is through the notion of an entropy condition propos
in [68, 69]; if one imagines the boundary curve as a source for a propagating flame, t
the expanding flame satisfies the requirement that once a point in the domain is ign
by the expanding front, it stays burnt. This construction also yields the entropy-satisfy
Huygens'’s construction given in Fig. 1.

3.2. Curvature-Driven Limits and Viscous Hyperbolic Conservation Laws

Yet another way of obtaining this nondifferentiable weak solution after the occurren
of the singularity is through the limit of curvature-driven flows. Following the discussior
in [69, 70], we consider now a speed function of the fréim= 1 — ex, wheree is a
constant. The modifying effects of the terw are profound and in fact pave the way
toward constructing accurate numerical schemes that adhere to the correct entropy cond
Following [69], we can write a curvature evolution equation as

Kt = €Kgoq + ex® — Kz, (4)

where the second derivative of the curvaturis taken with respect to arc lengsh This
is a reaction—diffusion equation; the drive toward singularities due to the reaction te
(ex® — k?) is balanced by the smoothing effect of the diffusion teery().

Consider again the cosine front and the speed fundiig) = 1 — ex, € > 0. As the
front moves, the trough is sharpened by the negative reaction term (bacauBet such
points) and smoothed by the positive diffusion term. Eor 0O, it can be shown that the
moving front stays smooth, as shown in Fig. 2a. However, with 0, one has a pure
reaction equatior; = —«2, and the developing corner can be seen in the exact solutic
k(S,t) = «k(s,0)/(1+ tk(s, 0)). This is singular in finite time if the initial curvature is
anywhere negative. The entropy solution to this problem when 1 is shown in Fig. 2b.
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FIG. 2. Entropy solution is the limit of viscous solutions. &)= 1 — 0.25¢; (b) entropy solutionf = 1.0).

The limit of the curvature-driven flow as the curvature coefficierntinishes produces
the entropy-limiting solution. This link can be seen more clearly by following the argume
given in [70], which we now repeat. Consider the initial front given by the graph(zj,
with f and f’ periodic on [0, 1], and suppose that the propagating front remains a graph
alltime. Letyr be the height of the propagating function at timand thusg) (x, 0) = f (x).
The tangent atx, ¥) is (1, ¥«). The change in height in a unit time is related to the speed
F in the normal direction by

1/2
v _ 14y 5)
F 1 '
and thus the equation of motion becomes
2
o= F(1+v)"" (6)

Use of the speed functiofi(x) = 1 — ex and the formulac = —yx/(1 + ¥2)¥? yields

Vxx
1+ y2

1/2
i (1+v) = ©)
This is a partial differential equation with a first-order time and space derivative on the |
side and a second-order term on the right. Differentiation of both sides of this equat
yields an evolution equation for the slope= dvr/dx of the propagating front, namely,

e [, = e| 2] ®
Thus, as shown in [70], the derivative of the curvature-modified equation for the chang
height s looks like some form of a viscous hyperbolic conservation law, V@tlu) =
— (14 u?¥? for the propagating slope. Hyperbolic conservation laws of this form have
been studied in considerable detail and our entropy condition is equivalent to the one
propagating shocks in hyperbolic conservation laws.
Finally, we point out that the most mathematically precise way of discussing nonsmo
solutions is through the idea of viscosity solutions introduced by Crandall and Lions [:
28]; we refer the interested reader to those and associated papers for a complete discu:
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3.3. Link to Numerical Schemes for Hyperbolic Conservation Laws

Given this connection, the next step in development of PDE-based interface advancer
techniques was to in fact exploit the considerable numerical technology for hyperbolic ¢
servation laws to tackle front propagation itself. In such problems, schemes are specific
designed to construct entropy-satisfying limiting solutions and maintain sharp discontir
ities wherever possible; these goals are required to keep fluid variables such as pres
from oscillating, and to make sure that discontinuities are not smeared out. This is equ
important in the tracking of interfaces, in which one wants corners to remain sharp, anc
intricate development so it can be accurately tracked. Thus, the strategy discussed in
was to transfer this technology to front propagation problems, and this view played a r
in the level set method introduced by Osher and Sethian in [56].

Il. BASIC ALGORITHMS FOR INTERFACE ADVANCEMENT

4. Level Set Methods: Basic Algorithms, Adaptivity,
and Constructing Extension Velocities

The above discussion focused on curves which remain graphs. The numerical leve
method given in [56] recasts the front in one higher dimension and uses the implicit analy
framework given in Section 2.1 to tackle problems which do not remain graphs; in ad
tion, that work developed multidimensional upwind schemes to approximate the relev
gradients. Here, we briefly review low-order versions of those schemes before turning
issues of adaptivity and construction of extension velocities.

4.1. Equations of Motion

Level set methods rely on two central embeddings: the embedding of the interface
the zero level set of a higher dimensional function and the embedding (or extension
the interface’s velocity to this higher dimensional level set function. More precisely, giv
a moving closed hypersurfadgt), that is,I" : [0, o) — RN, propagating with a speed
F in its normal direction, we wish to produce an Eulerian formulation for the motion ¢
the hypersurface propagating along its normal direction with speeghereF can be a
function of various arguments, including the curvature, normal direction, etcttdie
the signed distance to the interface. Suppose the propagating interface is embedded :
zero level set of a higher dimensional functignin other words, let (x,t = 0), where
x € RN is defined by

$(X,t =0) = +d. 9)

If this is done, then an initial value partial differential equation can be obtained for tl
evolution of¢, namely,

¢+ F|Vg| =0 (10)
o(X,t =0) given (12)

This is the implicit formulation of front propagation given in [56]. As discussed in [68-
70], propagating fronts can develop shocks and rarefactions in the slope, correspondir
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corners and fans in the evolving interface, and numerical techniques designed for hy
bolic conservation laws can be exploited to construct schemes which produce the cor
physically reasonable entropy solution.

There are certain advantages associated with this perspective. First, it is unchange
higher dimensions, that is, for surfaces propagating in three dimensions and higher. Sec
topological changes in the evolving froftare handled naturally; the position of the front
at timet is given by the zero level sei(x, t) = 0 of the evolving level set function. This
set need not be connected and can break and metgalaances. Third, terms in the speed
function F involving geometric quantities such as the normal ventand the curvature
may be easily approximated through the use of derivative operators applied to the leve
function, that is,

Y v Y
Vol Vol

Fourth, the upwind finite difference technology for hyperbolic conservation laws may
used to approximate the gradient operators.

4.2. Approximation Schemes

Entropy-satisfying upwind viscosity schemes for this initial value formulation were ir
troduced in [56]. One of the simplest first-order schemes is given as

Pt = ol — At[max(Fij, 0 V¥ ¢ + min(Fij, )V~ ¢], (12)
where
1/2
max( |Jk¢ 0) +m|n(D|]k¢ O)
Vi =| +maxD;!s, 0)° +min(D;j{ . 0)°
+max(D;Z¢, 0)* + min(DjiZ¢, 0)
and

max(D;iy e, 0)2+min(Di]|f¢ 0)2 "

V¢=| +maxD;)e, 0) + min(D;{ . 0)
+ max(D;i¢ ¢, O) + min(Di]k¢,O)
Here, we have used standard finite difference notation so that, for example,

_ @itrjk—Pijk)

Dljk - AX (13)

Higher order schemes are also available; see [56].
The above formulation reveals two central embeddings.

1. First, in the initialization step (Eq. (9)), the signed distance function is used to bu
a functiong which corresponds to the interface at the levelgset 0. This step is known
as “initialization;” when performed at some later point in the calculation beycad, it
is referred to as “reinitialization.”
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2. Second, the construction of the initial value PDE given in Eq. (10) means that 1
velocity F is now defined foall the level sets, not just the zero level set corresponding t
the interface itself. We can be more precise by rewriting the level set equation as

¢ + FVg| =0, (14)

whereF®is some velocity field which, at the zero level set, equals the given $pekd
other words,

FX'=F on¢ =0.

This new velocity fieldF®*tis known as the “extension velocity.”
Both of these issues need to be confronted to efficiently apply level set methods
complex computational problems.

4.3. Adaptivity: The Narrow-Band Level Set Method

Equation 12 is an explicit scheme, and hence it can be solved directly. The time s
requirement depends on the nature of the speed funEtidor an F that depends only on
position, the time step behaves liReF < 1. Inthe case when the speed functfodepends
on curvature terms (for examplE, = —«), the equation has a parabolic component, anc
hence the time step requirement resembles that of a nonlinear heat equation; the time
depends roughly ort;.

In the level set formulation, both the level set function and the speed are embedded
a higher dimension. This then implies computational labor through the entire grid, whi
is inefficient. A rough operation count for the original level set method assiNngsd
points in each space dimension of a three-dimensional problem. For a simple problen
straightforward propagation with speBd= 1, assuming that it takes roughiy/time steps
for the front to propagate through the domain (here, the CFL condition is taken almost ec
to unity), this produces a®(N4) method.

Considerable computational speedup in the level set method comes from the use o
narrow-band level set methpthtroduced by Adalsteinsson and Sethian in [1]. It is cleal
that performing calculations over the entire computational domain is wasteful. Instead,
efficient modification is to perform work only in a neighborhood (or “narrow band”) of the
zero level set. This drops the operation count in three dimensioBgk&®), wherek is
the number of cells in the narrow band. This is a significant cost reduction; it also me:
that extension velocities need only be constructed at points lying in the narrow band
opposed to all points in the computational domain.

The idea of limiting computation to a narrow band around the zero level set was introdut
in Chopp [22] and used in recovering shapes from images in Maitali [50]. The idea is
straightforward and can be best understood by means of figures, following the discus:
in [78].

Figure 3 shows the zero level set corresponding to the front with a dark, heavy li
surrounded by a few neighboring level sets. Figure 4 shows the data structures used to
track of the narrow band. The entire two-dimensional grid of data is stored in a square ar
A one-dimensional object is then used to keep track of the points in the array (dark ¢
points in Fig. 4 are located in a narrow band around the front of a user-defined width) (
Fig. 4). Only the values af at such points within the tube are updated. Values af grid
points on the boundary of the narrow band are frozen. When the front moves near the ¢
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FIG. 3. Grid points in dark area are members of narrow band.

of the tube boundary, the calculation is stopped, and a new tube is built with the zero le
set interface boundary at the center. This rebuilding process is known as “reinitializatic
Thus, the narrow-band method consists of the following loop:

e Tag “alive” points in narrow band.

e Build “land mines” to indicate near edge.

e Initialize “Far Away” points outside (inside) narrow band with large positive (negative
values.

e Solve level set equation until land mine hit.

e Rebuild; loop.

In the final step, this “rebuilding” requires some form of reinitialization to rebuild th
signed distance function throughout the new narrow band. This is discussed in deta
Section 5.

Use of narrow bands leads to level set front advancement algorithms that are comg
tionally equivalent in terms of complexity to traditional marker methods and cell technigu
while maintaining the advantages of topological merger, accuracy, and easy extensic
multidimensions. Typically, the speed associated with the narrow-band method is abour
times faster on a 168 160 grid than the full matrix method. Such a speedup is substanti

y.

FIG. 4. Pointer array tags interior and boundary band points.
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in three-dimensional simulations, it can make the difference between computationally
tensive problems and those that can be done with relative ease. Details on the accu
typical tube sizes, and number of times a tube must be rebuilt may be found in Adalsteins
and Sethian [1].

4.4. Constructing Extension Velocities

As discussed above, the characterization of an interface as an embedding in an impli
defined function means that both the front and the velocity of the front are assumed to h
meaning away from the actual interface (see Fig. 5). Thus, to be precise, one has

¢ + F&|Ve| =0, (15)

whereF®tis some velocity field which, at the zero level set, equals the given $pekd
other words,

F¥'=F on¢ =0.

There are several reasons why one needs to build these extension velocities.

1. There may be no natural speed function. In some physical problems, the velocit
given only at the front itself. For example, semiconductor manufacturing simulations of t
etching and deposition process require determination of the visibility of the interface w
respect to the etching/deposition beam (see [2—4], as well as later in this paper). The|
no natural velocity off the front, since it is unclear what is meant by the “visibility” of the
other level sets. In this case, an extension velocity must be specifically constructed.

2. Subgrid resolution may be required. In some problems, such as etch under very s
material changes, the speed of the interface changes very rapidly or discontinuously a:
front moves through the domain. In such cases, the exact location of the interface deterrnr
the speed, and constructing a velocity from the position of the interface itself, rather t
from the coarse grid velocities, is desirable.

3. Accurate representation of front velocities may be needed. In some problems, the sj
of the interface needs to be calculated from jump conditions or subtle relations involvi
the solution of an associated partial differential equation on either side of the interfa
examples include Stefan problems and problems involving Rankine—Hugoniot speeds.
extension velocity view allows one to construct the correct front velocity and use this
move the front and the neighboring level sets.

4. Maintaining a nice level set representation is important. Under some velocities, s
as those which arise in fluid mechanics simulations, the level sets have a tendency to e
bunch up or spread out, which is seen whdrecomes either very steep or flat. The extensior
velocity discussed here is designed so that an initial signed distance function is essent
maintained as the front moves. We maintain a signed distance function for an import
reason: by keeping a uniform separation for the level sets around the front, calculatior
variables such as curvature becomes more accurate.

Suppose one chooses an incorrect velocity extension, one that does not maintair
signed distance function. Unchecked, this can cause the level set function to develop s
and even discontinuous gradients across the zero level set. This means that calcula
of quantities involving derivatives right at the interface, usually where one needs them
most, become highly suspect. Then the only hope is to repair the level set function e
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FIG.5. Constructing extension velocities.

time step so that it is rebuilt as the signed distance function. This has the potential to
considerable error and expense to the algorithm; the process of reinitialization can it
move the location of the zero level set. Instead, we take the approach of building the cor
extension velocity in that it maintains the signed distance function as the solution evol\
hence avoiding all reinitialization.

How much freedom does one have in the construction of this extension velstity
Beyond the requirement that it equal the velocity on the front itself, there is considera
freedom. The original level set calculations is [56] were concerned with interface proble
with geometric propagation speeds, and hence an extension velocity was naturally buil
using the geometry of each given level set. In more nongeometric or local applicatic
many different extension velocities have been employed. In many fluid simulations, c
can choose to directly use the fluid velocity itself to acF&¥. This is what was done by
Rheeet al. [63] in a series of simulations of turbulent combustion. They built an extensic
velocity using an underlying elliptic partial differential equation coupled to a source ter
along the interface. This was also done in the two-phase flow simulations of @hahg
[19] and Sussmaet al.[91]. In these simulations, some bunching and flattenting of the levi
set function occurs. This is repaired at every time step through a reinitialization proc
which rebuilds the signed distance function using an iterative process given in [91].

When there is no choice available for an extension velocity, Madieali [51] introduced
the idea of extrapolating the velocity from the front. Theiridea was to stand at each grid pc
and use the value of the speed function at the closest point on the front. Another appre
is to build a speed function from the front using some other, possibly less physical quan
Sethian and Strain [86] developed a numerical simulation of dendritic solidification; in tt
model, the velocity at the interface depended on a jump condition across the interface
hence had no meaning for the other “nonphysical” level sets. A boundary integral expres:
was developed for the velocity on the interface and evaluated both on and off the fron
provide an extension velocity. The crystal growth study of Cétead. [20] worked directly
with the partial differential equations (rather than the conversion to a boundary integt
and built an extension velocity by solving an advection equation in each component, ag
coupled to a reinitialization procedure.

The important point is that the velocity fieFP*! used to move the level sets neighboring
the zero level set need have nothing to do with the velocity suggested by the physics ir
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rest of the domain. It need only agree with the velo€itgit the zero level set corresponding
to the interface.

What are desirable properties of an extension velocity? Here, we follow the discussi
in [5, 81]. First, it should match the given velocity on the front itself. Second, it is desirab
that it moves the neighboring level sets in such a way that the signed distance func
is preserved. Consider for a moment an initial signed distance fungtiont = 0), and
suppose on builds an extension velocity which satisfies

VF®. V¢ = 0. (16)

It is straightforward to show that under this velocity field, the level set funetioemains
the signed distance function for all time, assuming that Bo#nd¢ are smooth. To see
that this is so (see [103]), suppose that initidWy (x,t = 0)| = 1, and one moves under
the level set equatiogy + F®Y|V¢| = 0; then note that

d|V¢|2 _ d _ d _ ext _ ext
pm _a(w-v(p)_zw-aw_ 2V - VE V| — 2V - V|V |F

The first term on the right is zero because of the way the extension velocity is construc
the second is sero becaysap (x,t = 0)| = 1. Thus, the solution satisfi¢®¢| = 1; this
plus a uniqueness result for this differential equation show|#at = 1 for all time.

Thus, the strategy introduced by Adalsteinsson and Sethian [5] uses a two-tiered sys
Given alevel setfunction attinre namelypj; , one first constructs a signed distance functior
i} around the zero level set. Simultaneous with this construction, one then constructs
extension velocityF®** satisfying Eq. (16). This velocity is used to update the level se
functiong”.

There are several important things to note about this approach:

e This construction finds an extension velocity which is then used to update the le
set function. One can, of course, use as high an order method as desired for the leve
update. If one wants to perform this update restricted to a narrow band using the narr
band methodology of [1], one is free to do so. However, this methodology provides a w
of doing so at all of the points where one wants to build this extension velocity.

e In this approach, one can choose never to reinitialize the level set function as follo

1. Consider a level set functia#' at time stepAt = 0.
2. Build the extension velocity by simultaneously constructing a temporary signi
distance functioy®™P and an extension velocity such that

V¢temp . VFeXt — 0’

with ¢®™P matchinge” at their zero level sets, an@®! matching theF given on the
interface.

3. Then advance the level set functiph under the computed extension velocity to
produce a new"** by solvingg; + F{V¢| = 0.
This algorithm never reinitializes the evolving level set function, yet moves it under
velocity field that maintains the signed distance function. This avoids a large set of proble
that have plagued some implementations of level set methods, namely that reinitializa
steps can perturb the position of the front corresponding to the zero level set.
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e Inthis approach, one explicitly finds the zero level set corresponding to the interface
build the extension velocity. This may seem slightly “illegal”: one of the appealing featur
of level set methods is that the front need not be explicitly constructed and that all of
methodology may be executed on the underlying grid. Here, the front is explicitly bui
however, one neither moves nor updates that representation. In cases of speed func
that depend on factors such as visibility, this is completely natural. The central virtue
level set methods lies in the update of the level set function on a discrete mesh to en
the motion of the interface itself. This strategy and philosophy are maintained.

Thus, given a front velocity, this choice of extension velocity allows one to update at
interface represented by an initial signed distance function in such a way that the sig
distance function is maintained, and the front is never reinitialized. If one chooses to
the adaptive methodologies given in the narrow-band approach, occasional rebuildin
the narrow band may be required, but this is performed only occasionally.

4.5. Summary

In summary, two ideas which underpin level set methods are the link between sche
for hyperbolic fronts and propagating interfaces and the implicit formulation which embe
both the interface and the velocity field into one higher dimension, transforming frc
propagation into an initial value partial differential equation. To efficiently program levi
set methods, one also needs ways to find the signed distance function, both initially ar
rebuild the narrow band. That is, one must quickly and accurately solve

Vo =1, ¢=0 onTI.
In addition, one must solve the associated equation
V¢temp. VFeXt — 0

to efficiently and accurately build an extension velocity. Techniques for performing both
these steps result from fast marching methods, which we now discuss.

5. Fast Marching Methods for Reinitialization and Extension Velocities

Fast marching methods are finite difference techniques, more recently extended to
structured meshes, for solving the Eikonal equation of the form

This can be thought of as a front propagation problem for a front initially locatéd at
and propagating with sped€i(x, y, z,) > 0. We note that this is boundary valugartial
differential equation as opposed to an initial value problem given by level set methods, €
though it describes a moving interface. This Eikonal equation describes a large humbe
physical phenomena, including those from optics, wave transport, seismology, photolith
raphy, and optimal path planning, and fast marching methods have been used to solve
and a host of other problems. Our interest in this article will be confined only to using tt
Eikonal equation and fast marching method to construct efficient ways of reinitializing les
set functions and constructing extension velocities. We refer the reader to [82] and [81]
a large collection of applications based on this technique.
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5.1. Fast Marching Methods

Consider the upwind finite difference scheme for the Eikonal equation given by

1/2
max(D;XT, ~DjT, 02 17

+max(DT, -DYT.0)%| = Fij, (17)
+max(DjZT, —DjiZT, 0)

which is related to the schemes discussed by Rouy and Tourin [64]. One approach to sol
finite difference scheme (see [64]) is through iteration, which leads@&tf) algorithm in
three dimensions, whels is the number of points in each direction. Instead, fast marchin
methods take a different approach.

The fast marching method, introduced in [75], is connected to Huygens’s principle. T
viscosity solution to the Eikonal equatigiAT (x)| = F(x) can be interpreted through
Huygens'’s principle in the following way: circular wavefronts are drawn at each point ¢
the boundary, with the radius proportionaRox). The envelope of these wavefronts is then
used to construct a new set of points, and the process is repeated; in the limit the Eik
solution is obtained. The fast marching method mimics this construction; a computatio
grid is used to carry the solutiam and an upwind, viscosity-satisfying finite difference
scheme is used to approximate this wavefront.

The order in which the grid values produced through these finite difference approxin
tions are obtained is intimately connected to Dijkstra’s method [29], which is a depth-sea
technique for computing shortest paths on a network. In that technique, the algorithm ke
track of the speed of propagation along the network links, fanning out along the netw
links to touch all the grid points. The fast marching method exploits a similar idea in tl
context of a continuous finite difference approximation to the underlying partial differenti
equation, rather than discrete network links.

In more detail, the fast marching method is as follows; we follow the presentation in [8
82]. Suppose at some time the Eikonal solution is known at a set of points (d&uatepted
points). For every not-yet accepted grid point such that it has an accepted neighbor, a
solution to the above quadratic Eq. (17) is computed, using the given valuesatfaccepted
points and values afo at all other points. Observe that the smallest of these trial solutior
must be correct, since it depends only on accepted values which are themselves sm
This “causality” relationship can be exploited to efficiently and systematically compute t
solution as follows (see Fig. 6):

First, tag points in the initial conditions @ceptedThen tag a€onsideredall points
one grid point away and compute values at those points by solving Eq. (17). Finally, tac
Far all other grid points. Then the loop is:

1. Begin Loop: LefTrial be theConsideredhoint with smallest value of .

2. Tag asConsideredall neighbors ofTrial that are notAcceptedIf the neighbor is in
Far, remove it from that set and add it to the Seinsidered

3. Recompute the values dfat all Consideredeighbors ofTrial by solving the piece-
wise quadratic equation according to Eq. (17).

4. Add pointTrial to Acceptedremove fromConsidered

5. Return to top until th€onsideredset is empty.
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FIG. 6. Upwind construction oAccepted/alues.

The key to an efficient implementation of the above technique lies in a fast way of locat
the grid point in the narrow band with the smallest valueTorAn efficient scheme for
doing so, discussed in detail in [81], can be devised using a min-heap structure, simile
what is done in Dijkstra’s method. Gives elements in the heap, this allows one to chang
any element in the heap and reorder the hed@(og N) steps. Thus, consider a mesh with
N total points. Then the computational efficiency of the fast marching method for the me
with N points isO(N log N); N steps to touch each mesh point with each step requirin
O(log N), since the heap has to be reordered each time the values are changed.

The fast marching method evolved in part from examining the limit of the narrow-ba
level set method [1] as the band was reduced to one grid cell. Fast marching method:
taking the perspective of the large body of work on higher order upwind, finite differen
approximants from hyperbolic conservation laws, allow for higher order versions on b
structured and unstructured meshes. The fast marching method has been extended to |
order finite difference approximations by Sethian in [82], first-order unstructured meshe:s
Kimmel and Sethian [40], and higher order unstructured meshes by Sethian and Viadimi
[87]; see also photolithography applications in [76], a comparison of a similar approach w
volume-of-fluid techniques in [35], a fast algorithm for image segmentation in [49], ar
computation of seismic traveltimes by Sethian and Popovici [85]. We also refer the reade
[96] for a different Dijkstra-like algorithm by Tsitsiklis which obtains the viscosity solutior
through a control-theoretic discretization which hinges on a causality relationship base
the optimality criterion.

Because we strongly suggest using the more accurate fast marching method introd
in [81, 82], we include it here for completeness. Following that discussion, we consic
now the switch functions defined by

switch X = 1 ifTi2;k and Ti_yjkareknown and T2k < Ti_1j«k
K7 1o otherwise ’
Switcht — 1 ifTijojk and Tiigjkareknown and Tijojk < Tit1jk
K7 1o otherwise '

(The expressions are similarynandz.)
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We can then use these operators in the fast marching method, namely,

max{ [ D T + switchx 5D T| — [DifkT — switchty 8 DT, O} v

+max [ DT + switehy & Dy YT] — [DYT — switch!} 4D,V 1], 0]
+ max|[DjjgT + switchjg 52D T — [DIJkT—swncrfrZAZ ,TkZ“T},O]Z

1

“El (18)

This scheme attempts to use a second-order one-sided upwind stencil whenever p
are available, but it reverts to a first-order scheme in the other cases. We note in addi
that characteristics flow into the shocks, not out of them. The above method provides hic
accuracy in regions of smoothness; the ultimate accuracy depends on the relationsh
causality to shock lines in the solution. Numerical tests published in [81, 82] indicate
second-order method for a collection of test cases. For details and discussion, see [81,

5.2. Using Fast Marching Methods for Reinitialization and Extension Velocities

We can now use the techniques given by Adalsteinsson and Sethian [5] which exploit
marching methods to both reinitialize level set functions and construct extension velociti
Recall the step:

o Build the extension velocity by simultaneously constructing a temporary signed d
tance functiony'®™ and an extension velocity such that

V¢temp . VFeXt — 0’

with ¢®™P matchinge" at their zero level sets, an@®! matching theF given on the
interface.

This can be done as follows. First, use the fast marching method to compute the sig
distancep'®™P by solving the Eikonal equation

IVT| =1

on either side of the interface, with the boundary condition That O on the zero level set
of ¢. The solutionT will then be the temporary signed distance functg?"™. The fast
marching method is run separately for grid points outside and inside the front (note t
whether a grid point is inside or outside is immediately apparent from the sign of the le
set functionp™). The most accurate way to build values to initialize the fast marching he:
is by actually finding the front using an accurate version of a contour plotter and then us
this to build the nearby values; programmed correctly, this is both fast and accurate.

In this approach, we explicitly find the zero level set corresponding to the interface
order to reinitialize the front (and, as we shall see below, to build the extension velocity
well). This may seem slightly “illegal”: one of the appealing features of level set metho
is that the front need not be explicitly constructed and that all of the methodology may
executed on the underlying grid. Here, we choose to explicitly build the front. Howeve
we neither move nor update that representation. In cases of speed functions that depe!
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factors such as visibility, this is completely natural. The central virtue of level set methc
lies in the update of the level set function on a discrete mesh to embed the motion of
interface itself. This strategy and philosophy are maintained.

Finding the zero level set is quite straightforward. As mentioned above, in two dime
sions a contour plotter can be built. In three dimensions, any algorithm which discretize
particular level set of an implicitly defined function can be used. We typically use a varic
of the “marching cube” method discussed in [45], which builds a triangulated representa
of the front. This can then be used to start the fast marching method for both construc
the signed distance function and for building the extension velocity, which we now discu

Onceg'®™ is found, the next step is to extend a speed function which is given alol
an interface to grid points around the front. This construction should extend the spee
a continuous manner, and avoid, if possible, the introduction of any discontinuities in
speed close to the front.

Recall that we want to construct a speed funcdit that satisfies the equation

VES. vt =, (19)

The idea is to march outward using the fast marching method, simultaneously attact
to each grid point both the distance from the front and the extended speed value. We
compute the signed distang&™Pto the front using the fast marching method as describe
in the previous section. As the fast marching method constructs the signed distance at
grid point, one simultaneously updates the speed vBRfeaccording to Eq. (19). In the
gradient stencil, we use only neighboring points close to the front to maintain the upw
ordering of the point construction. As an example of a first-order technique, assume
(i +1, j)and(, j — 1) are the points that are used in updating the distanedsithe new
extension value, it then has to satisify an upwind version of Eq. (19), namely,

t t t t
=B B — b Fiinj—v v—Fij1) _ 0
h ’ h ) h ’ h o

Since(i + 1, j) and(i, j — 1) are known,F is defined at those points, and this equatior
can be solved with respect tato produce

R (0 ) + Ry (07— )
(B T + (4P — )

Similar expressions exist at other mesh points. Complete details on the use of fast marc
methods to construct extension velocities may be found in [5].

These two steps allow one to efficiently reinitialize and build extension velocities; higf
order fast marching methods provide more accurate versions of these constructions.

6. Extensions and Implementations
6.1. Extensions

There have been many algorithmic extensions to these basic ideas, considerably ex
ing the range and applicability of these technigues. To mention only a few, these inclt
variational level set methods to handle multiple differing interface types by 2hab
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[103] (see also [74]), multiple junctions by Merrimahal. [52], level set methods for un-
structured meshes by Barth and Sethian, including terms for curvature flow [11], adap
mesh refinement schemes by Milne [53], higher order fast marching methods [82],
marching methods for manifolds by Kimmel and Sethian [40] as well as certain types
non-Eikonal static Hamilton—Jacobi equations by Sethian and Vladimirsky [87], level ¢
flows in arbitrary co-dimension by Ambrosio and Sonar [7], hybrid methods, includir
coupled level set/volume-of-fluid techniques by Bourlioux [13], parallel versions [71], ar
extensions to motion under the intrinsic Laplacian of curvature by Chopp and Sethiar
[25] and Chopyet al. in [26]. We refer the reader to these papers and the review in [81],
well as companion articles in this issue of the Journal. This paper is by no means meat
represent the large and rapidly growing body of work in these areas.

6.2. Implementations

There are a large number of ways to implement the details of these techniques. Thes
clude various high order schemes, iterative ways of performing reinitializations, variants
the narrow-band method, and alternative ways of building extension velocities. In this s
tion, we would like to offer some comments which address some issues and implements
details.

6.2.1. Sources of error. There are several sources of error when level set methods ¢
used to propagate fronts. These include:

e Errors due to poor choices of extension velocitiesThis can lead to distortion in
the neighboring level sets, which can require reinitialization procedures to return the le
set function to the signed distance function. If the extension velocity methodology c
scribed earlier is used, this will ensure, at least formally, that the signed distance funci
is maintained.

e Error due to over use of reinitialization. Reinitialization has a tendency to move the
location of the interface. While higher order methods can help, including those that attemy
either redistribute mass or solve an associated constraint problem, our experience is the
best approach is to limit reinitialization. This is one of the reasons that the size of the nari
band in the narrow-band method is chosen large enough to limit reinitialization, rather tt
being restricted to a one-cell wide band which would force continuous reinitialization.

e Error due to approximations in the gradient. First order is usually not sufficient;
the numerical diffusion causes sufficient error, and higher order schemes are recommer

e Time-stepping errors.We typically use a Heun’s method that is second order in time

6.2.2. Operation counts.Next, we revisit the issue of operation counts. Consider :
computational domain in three space dimensions Wtlpoints in each grid direction.
An adaptive narrow-band method focuses all the computational labor onto a thin b:s
around the zero level set, thus reducing the labo®tiN3k), wherek is the width of
this narrow band, providing the optimal technique for implementing level set methods.
contrast, the fast marching method is an optimal “adaptive” technique, which drops
computational labor involved in solving the boundary value formulatio® ¢dl® log N).

At first glance, the computational efficiency of fast marching methods may not be evids
on the basis of these operation counts. However, two additional advantages provide
large computational savings. First, because the narrow-band level set method is solvi
time-dependent problem, there is a constraint on the time step. The CFL number is be
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on the speedr and controls the number of steps required to evolve a front. In contrast, t
fast marching method has no such restrictions. The spegithe front is irrelevant to the
efficiency of the method. Second, the number of elements in the heap depends on the le
of the front; in most cases, this length is small enough that, for all practical purposes,
sort is very fast and essentialfy(1). It is important to note that fast marching methods ar
methods for computing the solution to the Eikonal equation in all of space, not just ir
neighborhood of the interface.

6.2.3. Separation of labor.One good programming design goal is to provide an en
vironment in which the underlying physics and mathematical models that drive movi
interfaces may be essentially decoupled from the numerical issues involved in charax
izing and advancing these interfaces. While realistic interface problems typically invol
significant and intricate feedback mechanisms between the interface the underlying phy
from a programming point of view the two steps can be effectively separated. Our appro
is that the two key components, namely, (1) the update of the interface given a specific
locity field from the physics and (2) the construction of that velocity field from informatio
determined by the interface, may be split apart, so that each views the other as a “b
box.”

Thus, one divides the physical problem into two fundamental components:

1. The user-supplied driver routines, which make calls to the interface routine.
2. The interface advancement routine, which has two functions.
e It can be queried to produce geometric data about the front, such as location, nc
along the front, local curvature, etc.
e Given a user-supplied velocity field along the interface, it can be used to advat
the interface position.

By splitting codes in this manner, and building the general routines discussed ear
robust software can be built and reused.

6.2.4. Flow of codes.Finally, we break down code flow for interface problems. We
imagine the problem, somewhat abstractly, as follows:

e We are given an initial interfacg, which may consist of several pieces.

e Given the position of the interface at any time, we are able to solve a set of par
differential equations on either side of the interface, using information about the interf:
location itself, as well as the value of certain quantities on the interface, to obtain the sp
F on the interface.

A flow chart for the implementation is shown in Fig. 7.

Ill. THREE APPLICATIONS

The range of applications of level set and fast marching methods is vast, and we refe
only a few for bibliographic reference. These include work on semiconductor manufactur
[2-4, 35, 76, 84], geometry and minimal surfaces [9, 22—24, 72], combustion and detona
[10, 32, 63, 105, 106], fluids and surface-tension-driven flows [15, 19, 44, 54, 89-91, 1(
104, 106], shape recognition and segmentation [16, 18, 46—48, 51, 67], crystal gro
[20, 86], liquid bridges [21], groundwater flow [37], constructing geodesics [38, 40, 41
robotic navigation and path planning [39], inverse problems [65], grid generation [73], a
seismology [85].
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Initial Interface T’
(1) Tag Points in Narrow Band
(2) Use Fast Marching Method to Initialize Level Set Function ¢

Compute Interface Velocity F
(1) Local Front Information Provides Input for Physics
(2) Solve Physics on Both Sides of Interface

Build Extension Velocity
(1) Use Fast Marching Extension Methodology
(2) Construct F throughout Narrow Band

Advance Interface
(1) Use Narrow-Band Level Set Method

(2) Rebuild Narrow Band if Necessary
! LOOP

FIG. 7. Flow chart for implementing narrow-band level set methods.

In Fig. 8, we give a perspective on how some of these topics are related. There are n
other contributors to the evolution of these ideas; the chart is meant to give one perspe
on how the theory, algorithms, and applications have evolved. The text and bibliography
[81] give a somewhat more complete sense of the literature and the range of work unden

In the next sections, we discuss three applications in detail. The first, semicondu
processing, is chosen because it requires much of the above methodology to obtair
accuracy, efficiency, and robustness required in semiconductor manufacturing, and bec
the results have been so closely matched with experiment. The second, seismic proces
is chosen because of the need for the great speed provided by fast marching methods
third, optimal design of materials, is chosen because of the requirement of delicate ellj
solvers, and because of the more unusual nature of the application.

7. Interface Schemes for Semiconductor Processing

The first major application we consider is the application of these front propagati
techniques to tracking interfaces in the microfabrication of electronic components. T
goal is to follow the changing surface topography of a wafer as it is etched, layered,
shaped during the manufacturing process. These simulations rest on many of the previc
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FIG. 8. Algorithms and applications for interface propagation.

discussed techniques, including narrow-band level set methods, fast marching metl
for the Eikonal equation, and construction of extension velocities. In addition, they requ
attention to suchissues as masking, discontinuous speed functions, visibility determinati
algorithms for subtle speed laws depending on second derivatives of curvature, and
integral equation solvers. In this section, we follow closely the text in [2—4, 81].
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7.1. Physical Effects and Background

The goal of numerical simulations in microfabrication is to model the process by whi
silicon devices are manufactured. Here, we briefly summarize some of the physical
cesses. First, a single crystal ingot of silicon is extracted from molten pure silicon. Ti
silicon ingot is then sliced into several hundred thin wafers, each of which is then polist
to a smooth finish. A thin layer of crystalline silicon is then oxidized, a light-sensitive “phc
toresist” is applied, and the wafer is then covered with a pattern mask that shields pa
the photoresist. This pattern mask contains the layout of the circuit itself. Under expos
to a light or an electron beam, the exposed photoresist polymerizes and hardens, lec
an unexposed material that is then etched away in a dry etch process, revealing a bar
icon dioxide layer. lonized impurity atoms such as boron, phosphorus, and argon are t
implanted into the pattern of the exposed silicon wafer, and silicon dioxide is depositec
reduced pressure in a plasma discharge from gas mixtures at a low temperature. Finally,
films such as aluminum are deposited by processes such as plasma sputtering, and co
to the electrical components and component interconnections are established. The res
a device that carries the desired electrical properties.

These processes produce considerable changes in the surface profile as it unde
various effects of etching and deposition. This problem is known as the “surface topogra
problem” in microfabrication and is controlled by many physical factors, including th
visibility of the etching and deposition source from each point of the evolving profile
surface diffusion along the front, complex flux laws that produce faceting, shocks, &
rarefactions, material-dependent discontinuous etch rates, and masking profiles.

The underlying physics and chemistry that contribute to the motion of the interfce prof
are very much areas of active research. Nonetheless, once empirical models are formul
the problem ultimately becomes the familiar one of tracking an interface moving unde
speed functior. Simulations and text in this chapter are taken in part from Adalsteinss
and Sethian [2—4]; complete details may be found therein (see [84] for a review).

The underlying physical effects involved in etching, deposition, and lithography are qu
complex. The effects may be summarized briefly as follows:

e Deposition:Particles are deposited on the surface, which causes buildup in the prof
The particles may either isotropically condense from the surroundings (known as chem
or “wet” deposition) or be deposited from a source. In the latter case, particles leave
source and deposit on the surface; the main advantage of this approach is increased c¢
over the directionality of surface deposition. The rate of deposition, which controls t
growth of the layer, may depend on source masking, visibility effects between the sou
and surface point, angle-dependent flux distribution of source patrticles, and the angls
incidence of the particles relative to the surface normal direction. In addition, particl
might not stick, but in fact be reemitted back into the domain. This process is known
“reemission” and the “sticking coefficient” between zero and one is the fraction of particl
that stick. A sticking coefficient of unity means that all particles stick. Conversely, a lo
sticking coefficient means that particles may bounce many times before they eventu
become fixed to the surface.

e Etching: Particles remove material from the evolving profile boundary. The materi
may be isotropically removed, known as chemical or “wet” etching, or chipped away throu
reactive ion etching, also known as “ion milling.” Similar to deposition, the main advanta
of reactive ion etching is enhanced directionality, which becomes increasingly importan:
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device sizes decrease substantially and etching must proceed in vertical directions wit
affecting adjacent features. The total etch rate consists of an ion-assisted rate and a p
chemical etch rate due to etching by neutral radicals, which may still have a directio
component. As in the above, the total etch rate due to wet and directional milling effects
depend on source masking, visibility effects between the source and surface point, ar
dependent flux distribution of source particles, and the angle of incidence of the partic
relative to the surface normal direction. In addition, because of chemical reactions that 1
place on the surface, etching can cause surface particles to be ejected; this process is k
as “redeposition.” The newly ejected particles are then deposited elsewhere on the fi
depending on their angle and distribution.

¢ Lithography:The underlying material is treated by an electromagnetic wave that alte
the resist property of the material. The aerial image is found, which then determines
amount of crosslinking at each point in the material. This produces the etch/resist rat
each point of the material. A profile is then etched into the material, where the speed of
profile in its normal direction at any point is given by the underlying etch rate.

We now formalize the above. Define the coordinate system witlx gnedy axes lying
in the plane, and witlz being the vertical axis. Consider a periodic initial profilg, y),
whereh is the height of the surface above tkey plane, as well as a sour@egiven as a
surface above the profile; we wri(x, y) as the height of the source at (). Define the
source ray as the ray leaving the source and aimed toward the surface profilebéeehe
angle variation in the source ray away from the negatieis; s runs from 0 tar, though it
is physically unreasonable to haw¢2 < ¢ < m. Lety be the angle between the projection
of the source ray in thg—y plane and the positive axis. Letn be the normal vector at a
pointx on the surface profile antibe the angle between the normal and the source ray.
In Fig. 9, these variables are indicated. Masks, which force flux rates to be zero,
indicated by heavy dark patches on the initial profile. At each point of the profile, a visibili

Source

C (not visible)

Mask
Mask

Profile

FIG. 9. Variables and setup.
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indicator functionMy (X, X’) is assigned; this indicates whether the poirdn the initial
profile can be seen by the source poiht

7.2. Equations of Maotion for Etching and Deposition

The goal is to write the effects of deposition and etching on the spestch pointx on
the front.

7.2.1. Etching. We consider two separate types of etching:

o Fisoons: Isotropic etchings uniform etching, also known as chemical or wet etching

o F5"9 Direct etchings etching from an external source; this can be either a collectio
of point sources or an external stream coming from a particular direction. Visibility effec
are included, and the flux strength can depend on both the solid angle from the emit
source and the angle between the profile normal and the incoming source direction. Etc

can include highly sensitive dependence on angle such as in ion milling.

7.2.2. Deposition. We consider four separate types of deposition:

Deposition
Flsotropic .
deposition.

o Fpehostl pirect depositiorinvolves deposition from an external source; this can by
either a collection of point sources or an external stream coming from a particular directi
Visibility effects are included and the flux strength can depend on both the solid angle fr
the emitting source and the angle between the profile normal and the incoming source

Fronosmation Redepositioiinvolves particles that are expelled during the etching pro
cess. These particles then attach themselves to the profile at other locations. The stre
and distribution of the redeposition flux function can depend on factors such as the Ic
angle. A redeposition coefficierfiredeposition Which can range from zero to unity, represents
the fraction of redeposition that results from the etching process. A valig@ositon—= 1
means that nothing is redeposited and everything sticks.

o FLSPOSON | reemission depositiomarticles that are deposited by direct depositior
might not stick and may be reemitted into the domain. The amount of particles reemit

depends on a sticking coefficieBkeemission If Breemission—= 1, nothing is reemitted.

Isotropic depositions uniform deposition, also known as chemical or wet

In Fig. 9, we generalize all of these effects as the “source.” The plane source is shc
in the figure may consist of locations which emit either unidirectional or point-sourc
contributions.

7.3. Assembling the Terms

We may, somewhat abstractly, assemble the above terms into the single expression

__ Etching Etching Deposition Deposition Deposition Deposition
F= I:Isotropic'|' l:Direct + I:Isotropic + I:Direct + I:Redeposition'i' I:Reemission (20)

The two isotropic terms are evaluated at a paitty simply evaluating the strengths at
that point. The two direct terms are evaluated at a poion the profile by first computing
the visibility to each point of the source and then evaluating the flux function. These ter
require computing an integral over the entire source. To compute the fifth term at a poin
we must consider the contributions of every point on the profile to check for redepositi
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particles arising from the etching process; thus this term requires computing an inte
over the profile itself. The sixth ternfperosior is more problematic. Since every point on
the front can act as a deposition source of reemitted particles that do not stick, the total
deposition function comes from evaluating an integral equation along the entire profile
In more detail, lef2 be the set of points on the evolving profile at tilmand letSource
be the external source. Given two poirtandx’, let Y (x, x") be one if the points are visible
from one another and zero otherwise. Ldie the distance from to x’, let n be the unit
normal vector at the point, and finally, leto be the unit vector at the poirt on the source

pointing toward the poink on the profile. Then we may refine the above terms as:

Etching Etching
F= F|Ux|sotropic+/s FluXgirect (s ¥, ¥, 6, X)Y (X, X )(n - o) X’
ource

Deposition positio

+ FluXigoopic + / FIUXQSPO N, 3, 0, )T (X, X) (N - o) dX
Source
+ /(1 - ,BRedepositioaFluxg:gg;ig;gor(r, ¥, v, 0, X)Y (X, X)(n-a)dx
Q
+ / (1 — BreemissiolFlUXpeomesfs Vs 7, 0, 0T (X, X)(n - @) dX. (1)
Q

7.4. Evaluating the Terms

The integrals are performed in a straightforward manner. The front is located is loca
by constructing the zero level setéf it is represented in two dimensions by a collection
of line segments and in three dimensions by a collection of voxel elements; see [2,
The centroid of each element is taken as the control point, and the individual flux terms
evaluated at each control point. In the case of the two isotropic terms, the flux is immedia
found. In the case of the two integrals over sources, the source is suitably discretized
the contributions summed. In the fifth term, corresponding to redeposition, the intec
over the entire profile is calculated by computing the visibility to all other control point
and the corresponding redeposition term is produced by the effect of direct deposit
Thus, the fifth term requireld? evaluations, wherdl is the number of control points which
approximate the front.

7.4.1. Evaluation of the reemission ternmlhe sixth and last term is somewhat more
time consuming to evaluate, since it requires evaluation of the fli;REIRES” from each
point of the interface, each of which depends on the contribution from all other points. Th
this is an integral equation which must be solved to produce the total deposition flux at :
point. When discretized, it produces a full, nonsymmetric matrix which must be solved
every time step to compute the relevant flux. In [4], a recurrence relationship is develo
which allows a quick way of solving this discrete integral equation. This approach constru
an iterative solution to the integral equation, based on a series expansion of the interac
matrix. Fortunately, the iterative solution reduces to a simple matrix—vector multiplicati
and an error bound can be established to predict the number of iterations (which cal
thought of as terms in the expansion) to compute the solution to the desired degre
accuracy.

This problem is a good example of the necessity of constructing extension velociti
There is no readably available and physical definition of the velocity off the interface w
which to move the neighboring level sets. Consequently, the extension velocity methodol
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described earlier can be used to construct extension velocities in the narrow-band leve
method.

7.4.2. Visibility. To evaluate these terms above, we need to compute the visibility, that
tofind outif a pointon the frontisilluminated by another point on the front (or, in some case
by the source itself). This visibility issue is common to a host of other problems, includir
scene rendering in computer graphics, ray tracing, and optimal placement of transmitt
This is a time-consuming component of any calculation; programmed directly, it requi
O(N?3) evaluations, where there akepoints on the front. This is because each point mus
determine whether it can see eachNobther points, and there ai¢ intermediate points
which might block the visibility.

Fortunately, a very fast way of determining the visibility is offered by a combination c
level set methods and fast marching methods (see [2—4]). In the first step, we detern
the signed distance function away from the interface using the fast marching methoc
discussed above. Armed with this, we may easily determine if two points on the front ¢
each other by checking the sign of this signed distance function along the line segm
connecting the two points; if this function changes sign, then the two points cannot see €
other. This search may be done in a binary fashion, rendering a rapid way of determir
visibility. For details, see [2—4].

7.4.3. Surface diffusion.An additional physical effect comes from surface diffusion,
which relates to the motion of metal boundaries. It can be shown that this is connecte
motion by the intrinsic Laplacian of curvature (see [25] for details). The basic physical id
behind this motion is that it evolves to balance out the interface so that the final state
constant curvature. It can be shown that the enclosed volume is constant under this mo
and this can serve to develop fast methods. In two dimensions, it reduces to motion by
second derivative of curvature. Thus, we need to add an additional term of the form

F =14 eknq, (22)

wherex is an arc-length parameterization. The problem is delicate because Eq. (22) leac
alevel set equation which is a time-dependent fourth-order partial differential equation, ¢
the presence of the fourth derivative requiress an exceedingly small time step for stabilit
an explicit scheme; the linear fourth-order heat equation has a stability time step requiren
of the formO(ﬁ). We make use of the methodology given by Chopp and Sethian in [2E
Approximations and fast methods for solving this sort of flow may be found in [26].

7.5. Results

7.5.1. Photolithography developmeniVe begin the three-dimensional simulations
with a problem in photolithography. Once the electromagnetic and optical simulatio
are performed, the problem of photolithography development reduces to that of followi
an initially plane interface propagating downward in three dimensions. The speed in
normal direction is given as a supplied rate function at each point. The §peeH (X, vy, 2)
depends only on position; however, it may change extremely rapidly. The goal in lithc
raphy development is to track this evolving front. To develop realistic structures in thre
dimensional development profiles, a grid of size 30800 x 100 is not unreasonable. The
higher order fast marching method is of considerable value in the development step. A:
example, a rate function calculated using the three-dimensional exposure and post-expc
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(b)

FIG. 10. Lithographic development using fast marching method. (a) Masking pattern; (b) lithograpt
development; view from below.

bake modules of TMA's Depict 4.0 [93] has been coupled to the fast marching meth
Figure 10a shows the top view of a mask placed on the board. The dark areas correspo
areas that are exposed to light. The presence of standing waves, caused by the reflec
of the surface, can easily be seen. In Fig. 10b a view of the developed profile is shown fi
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FIG. 11. Isotropic etching into a hole.

underneath; the etching of the holes and the presence of standing waves can be seen ¢
For further results, see [76].

7.5.2. Etching and depositionNext, we show a straightforward calculation of isotropic
etching into a hole, taken from [3]. In Fig. 11 we show a square hole from which a mater
is being isotropically etched, corresponding to a simple speed functidgh-ef—1. As
expected, the sides of the cavity are cleanly etched away, leaving smoothed, rounded w

We follow with a calculation of source deposition from a plate located above the ho
The effects of visibility and shading are included. Along the entire plate, deposition matel
is emitted uniformly in each direction. In Fig. 12, we show three three-dimensional tin
plots of the evolving profile. The trench begins to pinch off due to the effects of visibility
and a bulb-shaped profile evolves.

We end the basic calculations with the modeling (Fig. 13) of the effect of nonconvex sp
ter etch/ion milling of a saddle surface. The nonconvex speeélaw(1 + 4 sirf(6)) cosd
causes faceting of sharp corners and rounded polishing; for details of this effect, see
Here, we use schemes for nonconvex Hamiltonians given in [57] for the level set updat

7.5.3. Complex simulationsNext, we include an example of three-dimensional effect:
of redeposition. The initial shape is a double-L, and we consider a combination of t
cosine flux deposition sources. That is, the initial flux at each point is given by

Flux(x) = cos (61) cog6,) + cog61) cog6y); (23)

in addition, the second deposition term is given a sticking coefficient of 0.1, and thus
also consider the effects of redeposition. H@rés the angle that the vectorfrom x to y
makes with the normal at, andé, is the angle that the vectormakes with the vertical. The

Initial Midway

FIG. 12. Source deposition into a hole.
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Initial Shape: T'= 0 F = [14 4sin%(0)] cos(8) T =2

F =[1+4sin*(f)]cos(d) T=4 F =[1+4sin?(#)]cos(d) T =6

F = [1 +4sin?(8)] cos(f) T =38 Final rotated

FIG. 13. Downward saddle under sputter etch.

results are shown after some time evolution in Fig. 14b; a two-dimensional cross-sectic
cut is shown in Fig. 14c. For more simulations, see [4].

7.5.4. Timings. The computational labor required in these calculations depends on
grid resolution required to represent the front and the complexity of the physical effects ur
consideration. Tables | and Il give rough timings for various sizes and physical complexit
for a Sun Ultra. The lithography timings were computed using the fast marching mett
given in [75].

7.6. Validation with Experimental Results

We end with a collection of applications of the level set—fast marching methodology whi
compare simulations with experiment to analyze various aspects of surface thin film phyzs
The simulations in this section are performed using either TERRgdNommercial version

3We thank Juan Rey, Brian Li, and Jiangwei Li for providing these results.
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TABLE |
Two-Dimensional Timings

50 by 50 100 by 100
Test Run time Steps Time/step Run time Steps Time/stey
Lithography (fast marching) 6.9 ms NA NA 26 ms NA NA
Isotropic (narrow band) 82 ms 24 34 ms 04s 49 8 ms
Unidirectional (with visibility) 04s 17 23 ms 23s 34 70 ms
Etching and redeposition 17s 25 68 ms 14s 51 0.3s
Deposition and redeposition 1.1s 17 65 ms 12s 39 0.3s
(iterative model)
TABLE Il
Three-Dimensional Timings
40 by 40 by 40 80 by 80 by 80

Test

Run time Steps Time/step

Run time Steps Time/stey

Lithography (fast marching)

Isotropic (narrow band)

Unidirectional (with visibility)

Etching and redeposition

Deposition and redeposition
(iterative model)

0.16s NA NA
1.3s 8 0.16s

16.7 s 24 0.7s
224's 12 19s
265s 11 24s

2.1s NA NA

13.6s 24 0.6s

270s 47 57s
260 m 25 10m
290 m 23 12.6m

(c)

s

FIG.14. Three-dimensional evolution under cosine source distribution with sticking coefficient 0.1. (a) Initi
position; (b) time evolution; (c) two-dimensional cross section.
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FIG. 15. lon milling: experiment (top) vs. simulation (bottom).

of these techniques built by Technology Modeling Associates and specifically designec
process simulation; for further details about this code and its capabilities, see [94]) c
research version of the code built by SAIT of Samsung Corpord4tion.

7.6.1. lon milling. We begin with a comparison with experiment of an ion-milling
process. The goal here is verify our ability to handle critical etching angles that are |
maximal in the normal direction. In these cases, as discussed earlier, the maximum o
yield function occurs away from 90 degrees, and this causes faceting in the evolving sh
Typically, the yield function is measured experimentally and then used as an empiri
model fit in the numerical simulation. We show simulations from the Terrain code match
against experimental data. Figure 15 shows an experiment on the top and a simulation
bottom. We note that both the simulation and the experiment show the crossing noncot
curves on top of the structures, the sharp points, and the sloping sides.

7.6.2. Complex effects: measuring the effects of various teriext, using the SAIT
code, we study of combination of various physical effects.

4We thank J. Huh, J. Shin, and H. Lee for use of their results.
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Photoresist Photoresist

Silicon Wafer

FIG. 16. Photoresist layer.

In this problem (see Fig. 16), the silicon layer is etched by a combination of unifor
chemical etching and ion-assisted directional etching. Relative rates depend on pro
parameters: power, pressure, gas fractions, etc. The photoresistis eroded only by ion mil
and hence it is highly directional, similar to the experiment shown is Section 7.6.1.

In the first experiment, we compare relative rates of uniform and directional etching
two separate cases (see Fig. 17). In Case 1, the directionality of the etching is strong. T
the small total etch rate results in large amount of physial erosion of the mask. Howevel
Case 2, the pressure in taken as 2.5 times larger than that in Case 1, and chemical et
is chosen to be larger than in Case 1. This enchances the total etch rate, as seen i
results, produces a large amount of uniform etching, and results in considerable unde
and sidewall erosion.

In the second set of experiments, we continue with two more cases (see Fig. 18.) H
we study the angular distribution of incident ion flux. In these studies, the gas fraction
oxygen in Case 4 is 2 times larger than that of Case 3. This results in a broader ang
distribution of ion flux in Case 4, and hence the amount of sidewall erosion is bigger
Case 4 than itis in Case 3.

7.6.3. Plasma-enhanced chemical vapor depositidfext, we show comparison with
experiment of two plasma-enhanced chemical vapor deposition (PECVD) simulations us
TERRAIN. We show a series of experiments. First, two smaller structure calculations
used to verify the ability to match experiment. Figures 19 shows these results. Figure:
and 21 show more simulations for more complex structures.

FIG. 17. Relative rates of uniform and directional etching.
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ohd a1 oLy veo Aoy
Case 3: Simulation = Case 3: Experiment  Case 4: Simulation = Case 4: Experiment

FIG. 18. Angular distribution of incident ion flux.

19.0kV X13.6K"27

FIG. 20. PECVD: experiment (left) vs. simulation (right).
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FIG. 21. PECVD: experiment (left) vs. simulation (right).

7.6.4. SRAM simulations.Finally, we show SRAM comparisons between experimen
and simulations for both small structures (Fig. 22) and large structures (Fig. 23) us
TERRAIN. Each figure shows the original layout together with the actual pattern print
through photolithography, followed by the sequential processing steps.

8. Seismic Traveltimes

Next, we explore applications of fast marching methods to problems involving the ime
ing of geophysical data sets. In [85], Sethian and Popovici used the fast marching met
to rapidly construct first arrival times in seismic analysis and then coupled this work
prestack migration. Here, we follow closely that work and text. For further details, see [8

Three-dimensional (3D) prestack migration of surface seismic data is a tool for imagi
the earth’s subsurface when complex geological structures and velocity fields are pre:
The most commonly used imaging techniques applied to 3D prestack surveys are metl
based on the Kirchhoff integral, because of its flexibility in imaging irregularly sample
data and its relative computational efficiency. To perform this Kirchhoff migration, on
approximately solves the wave equation with a boundary integral method. The reflectiy
at every point of the earth’s interior is computed by summing the recorded data on multi
mensional surfaces; the shapes of the summation surfaces and the summation weigh
computed from the Green’s functions of the single scattering wave-propagation experin
(see [60, 66]).

8.1. Background Equations

In some more detail, the essence of 3D prestack migration is expressed by the inte
equation

Image(x):///G(xs,x,a))G(x,xr,a))Data(xs,xr,a))dxr dxsdw,
Xs J X¢

wherex is the image output locatiors andx, are the data source and receiver coordinates
andw is angular frequency. The Green’s functi@hés, X, w) andG(x, X;, ) parameterize
propagation from source to image point and from image point to receiver, respectively
most implementations, the calculation is often done instead in the time domain and cal
expressed as the summation

Image{x) = Z Z AsA InpUt(X& Xr, ts + 1),

Xs X
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Original Printed layout

Simulation: Step one

Simulation: Step three Simulation: Step four

FIG. 22. SRAM simulation.

where Inputis afiltered version of the input data, and the Green’s functions are parameter
by the amplitude term#s and A, and travel timess andt; .

For 3D prestack Kirchhoff depth migration, the Green’s functions are represented
five-dimensional (5D) tables; these tables are functions of the source and receiver sul
locations(x, y) and of the reflector positiotx, y, z) in the earth’s interior. This Green’s
function parameterization is usually based on the assumption of acoustic propagation.
Kirchhoff prestack migration process consists of two stages. First, travel-time tables
computed and stored. Second, the migrated image is formed by convolving the prestack
with migration operator derived from the travel-time tables. Both phases present challer
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Simulation: Step three Simulation: Step four

FIG. 23. SRAM simulation.

from the perspectives of the geophysical accuracy and of the computer implementation
Fig. 24).

The key element of 3D prestack Kirchhoff depth migration is the calculation of trave
time tables used to parameterize the asymptotic Green'’s functions. An efficient travel-ti
calculation method is required to generate the 5D travel-time tables needed for 3D Kircht
migration® Also, since depth migration problems are generally applied in areas of compl
velocity structure, the travel-time calculation method must be robust. Computing 3D Gree

5The Green’s function can be reconstructed from travel-time tables that describe travel times from all sur
points(x, y) to all subsurface locations, y, z); thus the tables are five dimensional.
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*Y) G(x,Y)

FIG. 24. In 3D seismic surveying, seismic waves are generated by surface sources (shots) S, and the refl
waves are recorded at surface receivers (geophones) G. The Green'’s function describes the energy of the wa
backscattered from the reflector point at all possible source and receiver combinations.

function tables over a 1080 100 square kilometer area (about 430 marine blocks), wit
sources positioned every 200 meters, requires 1 terabyte of travel-time volumes. Thus, s
is an important issue.

Designing efficient and accurate travel-time computation methods has a long hist
the past ten years have seen considerable new advancements, particularly those aime
finite difference approach (see Vidale ([97])). Prior to this work, travel times were typical
computed using ray tracing. While these ray-tracing methods offer a high degree of accur
they also pose interpolation problems in shadow areas and areas where multiple cat
develop. The use of finite difference travel times ameliorates these interpolation proble
in shadow zones, at the price of foregoing detection of most energetic arrivals in excha
for the first arrival.

A broad spectrum of travel-time computation methods was developed in the early 19¢
Vidale extended his finite difference travel time to three dimensions [98], while van Tri
and Symes [95] introduced a two-dimensional explicit finite difference method with
vectorizable inner kernel that ran efficiently on vector computer platforms. At its core, t
problem of computing first arrival times requires solution of the Eikonal equation, with t
goal of accurately and robustly dealing with the formation of cusps and corners, topolog
changes in the solution, and singularities. Fast marching methods, both first- and sec
order versions, provide viable approaches.

8.2. Computing Fast Marching Method Travel Times through a Salt Structure

We begin by showing the results of using the fast marching method to compute thr
dimensional travel times through a salt structuMe start with the techniques applied
to a 3D SEG/EAGE salt dome velocity model [8]. The salt dome model was design
to contain major complex features that are characteristic of complicated Gulf of Mexi
salt structures. It includes a northwesterly plunging stock, a secondary reactivation ¢
southward of the stock, a low-relief eastern flank, a faulted southern flank with a toe thr
a rounded overhang on the west flank, five sands that are gas charged (at least one co

5 All seismic calculations were performed using the implementation of the fast marching method developec
3DGeo Corporation.
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FIG. 25. Travel-time slices through SEG/EAGE salt model.

both a gas—oil contact and an oil-water contact), and a shale sheath that is modeled 1
geopressured. The seafloor map exhibits a counter-regional fault scarp, a bathymetric
associated with the sill crest and a shelf break at the southeast end of the model. The ov
model size is 15 x 3.5 x 4.2 km® on a 20-m grid.

The SEG/EAGE salt model has a complicated salt-to-sediments interface which cre:
complex wave propagation problems. We show contour travel times superimposed on
velocity model which are representative for the wave propagation patterns encounte
while solving the Eikonal equation in the SEG/EAGE salt model. Figure 25 shows a trav
time slice through the SEG/EAGE salt model with a point source at the surface. The gri
a100x 100 x 100 mesh, with mesh size equal to 40 m per cell side. Figure 25b shows 1
formation of headwaves which travel along the salt—-sediment interface. Figure 26 sh
the result of a horizontal travel-time slice through the travel-time cube at a depth of 138(
and accurately captures the formation of cusps.

8000 9000 10000
L —— Y - -

/

11000

0009 000S

0004

0008

Horizontal cross section: Z=1380m

FIG. 26. Horizontal slice through SEG/EAGE salt model.
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A. SEG/EAGE velocity, 1220 m depth B. SEG/EAGE C3, first arrivals, 1220 m

FIG. 27. Velocity model and migrated image.

8.3. Migration Using the Fast Marching Method

Figures 27 and 28 show slices through the three-dimensional velocity and correspon
structural images obtained from migration on prestack data obtained from a given data
On the left, Fig. 27 shows a depth slice through a velocity cube at a depth of 1220 m;

FIG. 28. Velocity model and migrated image.
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the right, the corresponding migrated image slice is shown. The salt-sediment interf
and the semicircular fault cutting through the salt body are imaged with high resolutic
Figure 28 compares the velocity model on the left with the corresponding migrated |i
on the right for a different slice. The sediment images are imaged at the correct locatic
together with the salt body borders. The areas with lesser quality are under the salt, r
probably because of the multiple reflected arrivals at this spot from the water bottom «
intra-salt reflections, and also close to the left side of the top of the salt, most probably
resulting from the use of first arrivals in the fast marching method.

Next, two-dimensional travel times were used to image the Marmousi data, which i
synthetic data set based on a real geologic model from the Cuanza basin in Angola [
The geologic model of the basin consists of a deltaic sediment interval deposited upc
saliferous evaporitic series. The sediments are affected by normal growth faults cause
the salt creep. Under the salt there is a folded carbonate sedimentation series formi
structural hydrocarbon trap. The challenge is to image the hydrocarbon trap. The com
velocity model, with strong lateral velocity variations, is shown in Fig. 29 on the lef
On the right, the figure shows the migrated images using three-dimensional travel-ti
tables computed with the fast marching method, operating in a two-dimensional mode.
typical challenges in imaging this data set are (1) imaging correctly and without artifacts
position of the faults, (2) imaging the V-shaped termination of the layers, which are zor
that concentrate rays and produce distorted images, (3) imaging correctly the top of the
anticlinal structure and the bottom of the two salt intrusions, and (4) imaging the sedime
in the second, deep anticlinal structures. The images shown correctly image the fau
even in the high-velocity layers, and avoid artifacts at the bottom of the V-shaped fault e
layer terminations. The fact that the fast marching method produces first arrivals, wh
may not correspond to the most energetic arrivals, may explain why the second, de

3000 4000 6000 6000 7000 BOOO 3000 4000 6000 €000 7000 8OO0

(w) yradag
(w) yidag

A. Marmousi velocity B. Marmousi migration, first arrivals

FIG. 29. Velocity model and migrated image (Marmousi data set).
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FIG. 30. Region on left is slower than region on right.

anticlinal area is missed. For further discussion of this and other features, see [85], as
as [92].

8.4. Removing Headwaves: Toward Computing Most Energetic Arrivals

As discussed above, one of the issues associated with using the Eikonal equatic
compute arrival times is that the solution is typically limited to first arrivals. These may not
the most energetic arrivals; a noticeable case comes in the presence of sharp discontint
Consider a discontinuity separating a slow region from a fast region, as in Fig. 30.

A disturbance that starts on the left in the slower material will travel quickly once
reaches the discontinuity line between the two materials, and the true shortest patt
points located significantly above the source may traverse this discontinuity. Such arriv
known as headwaves, contain little energy and can negatively influence migration analy
Recently, algorithms have been developed which remove headwaves; see, for exampl
approach taken by Popovici ([92]).

Here, we introduce a variation on the fast marching method ([83]) which can be use
suppress headwaves in many situations. The key idea is to build a filter in the fast marcl
update procedure which represses headwave transmission; done carefully, one can re
headwaves from the calculation. This can be done without a priori information about
determination of the interface discontinuities. In Fig. 31, we show two calculations; the |

First Arrival Headwave Suppression

FIG. 31. Suppression of headwaves.
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First Arrival Headwave Suppression

FIG. 32. Suppression of headwaves by a diagonal structure.

figure is the true first arrival, while the right figure shows suppression of headwaves.
Fig. 32, we show that the results do not depend on the orientation of the discontinuit
again, the left figure is the true first arrival, while the right figure shows suppression
headwaves. Finally, in Fig. 33, we show headwave suppression against a curved bour
interface; the interior of the circle is a faster material. For further details, see Sethian [€

9. Optimal Structural Boundary Design

The third application of these methodologies concerns the boundary design of a loa
elastic structure. The goal is to find efficient designs which satisfy certain constraint eq
tions while minimizing other variables, such as the total weight. These results and discus:
are taken from Sethian and Wiegmann [88]; we refer the interested reader to that work
considerably more detail, explanations, and examples.

By way of illustration, consider a clamped and loaded cantilever (see Fig. 34). Supp
our goalis to remove as much material as possible from the original shape, while still mak
sure that the compliance (defined as the yield under the load) or the maximal stress in
structure stays below a certain threshold value. We can start with the original perfora
structure and compute the stress; as illustration, the stress contours on the original de
are shown in Fig. 35. We can then try to add and remove material in order to reduce
weightin such away thatthe compliance or stress does notrise above a given user-presc
level. Different designs (that is, newly introduced, removed, or reshaped holes) will gi
different compliance and stresses in the design. Our approach is to devise a systematic

First Arrival Headwave Suppression

FIG. 33. Suppression of headwaves by a circular structure.
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FIG. 34. Bending of the initial design of a cantilever with 105 circular holes. Parts of the left boundary a
clamped; on the rest of the boundary, including all holes, the traction is specified, with nonzero loading ¢
small portion about the center of the right boundary. The bending is beyond the regime of small-displacen
elastostatics and chosen only to illustrate the behavior. The larger rectangle is the computational domain, w
320 x 160 grid indicated in the lower left corner.

to add and remove material. This requires an accurate technique to compute the stress
a given multiply connected domain and an accurate technique to remove or reshape exi
boundaries and to introduce new ones. We use the narrow-band level set method to ad
subtract material, and a version of aeplicit jump immersed interface methimdcompute
the stress in arbitrary domains.

Our goal is to find a design configuration that minimizes the total weight while keepil
the compliance below a certain prescribed value.

9.1. Overview of Computational Approach
As a general outline, the algorithmic approach is as follows:

e Inthefirststep, the explicitjump immersed interface method is applied to the equati
of 2D linear elastostatics in the displacement formulation. These problems on arbitr
domains are solved quickly and without mesh generation by domain embedding and the
of fast elastostatic solvers. In brief, in [88] a general technique is given for solving the line

FIG. 35. Stress contours for initial configuration shown in Fig. 34.
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elastostatic equations in the displacement formulation and differencing the displaceme
This explicit jump immersed interface method (see [100]) is a finite difference techniq
on uniform grids, after LeVeque and Lisimersed interface meth@@#2]), that is capable
of dealing with non-grid-aligned boundaries with the same truncation error as inter
differences. The biggest benefit of this approach is that it is easy to add material (w
some subgrid resolution) at hole boundaries with high stress. In particular, this appro
allows one to start with designs that have holes cut “in the wrong place,” and see these h
disappear.

¢ Inthe second step, the given design is modified. The narrow-band level set metha
used to alter the shape, with velocities depending on the stresses in the current design. 1
stresses can be found from the displacements that were found in the first step. Boun
motion and merging as well as the introduction of new holes are all performed using t
grid function. This approach also allows the detection of regions that have become separ
from the nontrivial boundary conditions and have to be dropped from the computatio
Criteria are provided for advancing the shape in an appropriate direction and to correct
evolving shape when given constraints are violated.

The goal is to solve the two-dimensional Larequations, whera = (u, v) are the
displacements i andy, respectively, and

—M(AU + Uxx + ny) — k(uxx + l)xy) = f'in Q,
_ (24)
— (AU + Uyy + vyy) — A(Uxy + vyy) = F7iN Q.

Here u and A are the Lam constantsf = (fY, V) are body forces, anf is an open,
connected but not necessarily simply connected domain. We will also write Qvith

/(i =+ 1))

fu
CAU+ Uyy + vyy = — in Q,
A
" (25)
CAU+ny+vyy=_ )\‘ |n Q.
Displacement boundary conditions are
u=uonly C L. (26)

Hereu = (U, v)T are given functions o'y, the part ofd<2, the boundary of2, where
displacements are given. Traction boundary conditions are

o(Wn=gonTl, C 9Q2. (27)

One assumes that the coefficients, geometry, and boundary values are such that the prc
has a unique solution.

For concreteness, we may think of Eq. (27) as realized in Cartesian coordinates. T
u = (u, v) is the vector of displacements in tiieandy directions,s is the stress tensor
expressed irix, y) coordinatesn = (ny, ny) is the inward normal to the boundary (given
in (X, y) coordinates), and is the vector of surface forces applied at that boundary, als
given in(x, y) coordinates.
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We solve for the displacements and difference them to find the (symmetric) stress ter
with Lamé constantg andA,

o = u(Vu+ vu") + A tracgVu)l.

From the stress tensor, we can then calculate the von Mises stress as

2 2 2
S=/oi1 + 05 — 011022 + 3005.

We extend the von Mises stress from the grid to the boundaries by a least-squares ex
olation method. This provides us with a velocity fididdefined away from the interface
with which to advance the level set function.

9.2. Brief Technical Comments

9.2.1. Problem setup and elliptic issuediesh generation issues are avoided by sepe
rating the representation of the boundary from the uniform computational grid. To keep
data structures simple and to allow use of fast elastostatic solvers on rectangular don
[99], the problem is posed on a larger, rectangular donrawith zero normal boundary
conditions. The boundary conditions on the original boundary are rewritten as jump cor
tions that introduce discontinuities in the displacements inRdEhe choice of jump and
boundary conditions forces the extended solution to vanish on the extension but to m:
the solution inside the structure. On the level of the linear algebra, a Schur-complen
(as previously used, e.g., in [43, 100]) reduces the number of variables from proportic
to the grid points to proportional to the length of the boundary normalized by the me
width. We also note that in [88], derivative estimation and corrections are carried out
third order for the purpose of achieving &(h?) truncation error at all points, including
points neighboring the boundary; in addition, the work introduces a fast elastostatic so
which is of considerable use in its own right. For details, see [88].

9.2.2. Design alteration. Once the displacement and stresses are found, this yields
velocity field which may be extended to the nearby level set grid points to advance
interface. The motion of this interface corresponds to removal material in regions of I
stress and to added material in regions of high stress. The removal rate determines the c
stress contours along which new holes are cut and also the velocity of the boundary mo
It is increased only after no new holes are cut and the desigh boundaries have stabili
When the constraint is violated, the removal rate is decreased to add more material in rec
of high stress and remove less material in regions of low stress. The approach in [88] |
a narrow-band level set method to update the interface and the various holes, as well :
extension velocity formulation to move the neighboring level sets. We terminate when t
procedure can no longer improve the weight while satisfying the compliance.

9.2.3. Algorithm flow. The algorithmic flow is as follows:
MAIN ALGORITHM

1. Initialize; find stresses in initial design.

2. While termination criteria are not satisfied do
a. Cut new holes.
b. Move boundaries.
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c. Find displacements, stresses, etc.

d. Ifthe constraints are violated reduce removal rate of material and revert to previc
iteration.

e. Update removal rate.

Thus, the methodology presented in [88] attacks optimal design problems with h:
constraints using a evolutionary approach based on calculating derivatives, displacem
and stresses associated with solving the associated relevant elliptic problems.

We shall not go any further into the derivation of the appropriate jump conditions n
the algorithmic details of the explicitimmersed interface method and refer the reader to
original work in [88].

9.3. Results

We show two results from [88]. First, we study the constrained design of a short cantile\
A cantilever of ratio 1: 3 is clamped everywhere on the left boundary and vertically load
on the mid 6% of the right boundary. The rest of the right boundary and the top and bott
boundaries are traction free. The problem was chosen because it is a standard test prc
for structural topology design, (for example, see [61, 101]), with a known solution for
simpler pin-jointed two-truss problem [62]. The optimal height in that case is twice tt
width of the structure.

In Fig. 36a, taken from [88], we show clamping, loading, and stresses in the initial desi
Figure 36b shows the improved design under the combination explicit jump immers
interface method and the narrow-band level set method.

In a different calculation, Fig. 37 shows the design of a long cantilever from a perforat
structure. From theoretical considerations [6, 12], a truss-like structure is expected to
velop for certain optimal low-weight structures. To give the flavor of one such simulatio
we show the time sequence of the truss evolution. Again, for complete details on equati
of motion, numerical schemes, measurement tests, and additional examples, see the or
work [88].

(b)

25

=15

05

x x

FIG. 36. Improved shape for short cantilever. (a) Stress distribution in initial design; (b) improved design.
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FIG. 37. Evolution of truss structure.
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